csharp-sdk-upm/Libs/Google.Protobuf/WritingPrimitives.cs

628 lines
24 KiB
C#
Raw Normal View History

2021-03-29 14:54:12 +08:00
#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endregion
using System;
using System.Buffers.Binary;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Security;
using System.Text;
namespace LC.Google.Protobuf
{
/// <summary>
/// Primitives for encoding protobuf wire format.
/// </summary>
[SecuritySafeCritical]
internal static class WritingPrimitives
{
2021-03-30 10:54:25 +08:00
// "Local" copy of Encoding.UTF8, for efficiency. (Yes, it makes a difference.)
internal static readonly Encoding Utf8Encoding = Encoding.UTF8;
2021-03-29 14:54:12 +08:00
#region Writing of values (not including tags)
/// <summary>
/// Writes a double field value, without a tag, to the stream.
/// </summary>
public static void WriteDouble(ref Span<byte> buffer, ref WriterInternalState state, double value)
{
WriteRawLittleEndian64(ref buffer, ref state, (ulong)BitConverter.DoubleToInt64Bits(value));
}
/// <summary>
/// Writes a float field value, without a tag, to the stream.
/// </summary>
public static unsafe void WriteFloat(ref Span<byte> buffer, ref WriterInternalState state, float value)
{
const int length = sizeof(float);
if (buffer.Length - state.position >= length)
{
// if there's enough space in the buffer, write the float directly into the buffer
var floatSpan = buffer.Slice(state.position, length);
Unsafe.WriteUnaligned(ref MemoryMarshal.GetReference(floatSpan), value);
if (!BitConverter.IsLittleEndian)
{
floatSpan.Reverse();
}
state.position += length;
}
else
{
WriteFloatSlowPath(ref buffer, ref state, value);
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static unsafe void WriteFloatSlowPath(ref Span<byte> buffer, ref WriterInternalState state, float value)
{
const int length = sizeof(float);
// TODO(jtattermusch): deduplicate the code. Populating the span is the same as for the fastpath.
Span<byte> floatSpan = stackalloc byte[length];
Unsafe.WriteUnaligned(ref MemoryMarshal.GetReference(floatSpan), value);
if (!BitConverter.IsLittleEndian)
{
floatSpan.Reverse();
}
WriteRawByte(ref buffer, ref state, floatSpan[0]);
WriteRawByte(ref buffer, ref state, floatSpan[1]);
WriteRawByte(ref buffer, ref state, floatSpan[2]);
WriteRawByte(ref buffer, ref state, floatSpan[3]);
}
/// <summary>
/// Writes a uint64 field value, without a tag, to the stream.
/// </summary>
public static void WriteUInt64(ref Span<byte> buffer, ref WriterInternalState state, ulong value)
{
WriteRawVarint64(ref buffer, ref state, value);
}
/// <summary>
/// Writes an int64 field value, without a tag, to the stream.
/// </summary>
public static void WriteInt64(ref Span<byte> buffer, ref WriterInternalState state, long value)
{
WriteRawVarint64(ref buffer, ref state, (ulong)value);
}
/// <summary>
/// Writes an int32 field value, without a tag, to the stream.
/// </summary>
public static void WriteInt32(ref Span<byte> buffer, ref WriterInternalState state, int value)
{
if (value >= 0)
{
WriteRawVarint32(ref buffer, ref state, (uint)value);
}
else
{
// Must sign-extend.
WriteRawVarint64(ref buffer, ref state, (ulong)value);
}
}
/// <summary>
/// Writes a fixed64 field value, without a tag, to the stream.
/// </summary>
public static void WriteFixed64(ref Span<byte> buffer, ref WriterInternalState state, ulong value)
{
WriteRawLittleEndian64(ref buffer, ref state, value);
}
/// <summary>
/// Writes a fixed32 field value, without a tag, to the stream.
/// </summary>
public static void WriteFixed32(ref Span<byte> buffer, ref WriterInternalState state, uint value)
{
WriteRawLittleEndian32(ref buffer, ref state, value);
}
/// <summary>
/// Writes a bool field value, without a tag, to the stream.
/// </summary>
public static void WriteBool(ref Span<byte> buffer, ref WriterInternalState state, bool value)
{
WriteRawByte(ref buffer, ref state, value ? (byte)1 : (byte)0);
}
/// <summary>
/// Writes a string field value, without a tag, to the stream.
/// The data is length-prefixed.
/// </summary>
public static void WriteString(ref Span<byte> buffer, ref WriterInternalState state, string value)
{
// Optimise the case where we have enough space to write
// the string directly to the buffer, which should be common.
2021-03-30 10:54:25 +08:00
int length = Utf8Encoding.GetByteCount(value);
WriteLength(ref buffer, ref state, length);
2021-03-29 14:54:12 +08:00
if (buffer.Length - state.position >= length)
{
if (length == value.Length) // Must be all ASCII...
{
2021-03-30 10:54:25 +08:00
for (int i = 0; i < length; i++)
{
buffer[state.position + i] = (byte)value[i];
}
state.position += length;
2021-03-29 14:54:12 +08:00
}
else
{
2021-03-30 10:54:25 +08:00
#if NETSTANDARD1_1
// slowpath when Encoding.GetBytes(Char*, Int32, Byte*, Int32) is not available
byte[] bytes = Utf8Encoding.GetBytes(value);
WriteRawBytes(ref buffer, ref state, bytes);
#else
ReadOnlySpan<char> source = value.AsSpan();
int bytesUsed;
unsafe
{
fixed (char* sourceChars = &MemoryMarshal.GetReference(source))
fixed (byte* destinationBytes = &MemoryMarshal.GetReference(buffer.Slice(state.position)))
{
bytesUsed = Utf8Encoding.GetBytes(sourceChars, source.Length, destinationBytes, buffer.Length);
}
}
state.position += bytesUsed;
#endif
2021-03-29 14:54:12 +08:00
}
}
else
{
// Opportunity for future optimization:
// Large strings that don't fit into the current buffer segment
// can probably be optimized by using Utf8Encoding.GetEncoder()
// but more benchmarks would need to be added as evidence.
byte[] bytes = Utf8Encoding.GetBytes(value);
WriteRawBytes(ref buffer, ref state, bytes);
}
}
/// <summary>
/// Write a byte string, without a tag, to the stream.
/// The data is length-prefixed.
/// </summary>
public static void WriteBytes(ref Span<byte> buffer, ref WriterInternalState state, ByteString value)
{
WriteLength(ref buffer, ref state, value.Length);
WriteRawBytes(ref buffer, ref state, value.Span);
}
/// <summary>
/// Writes a uint32 value, without a tag, to the stream.
/// </summary>
public static void WriteUInt32(ref Span<byte> buffer, ref WriterInternalState state, uint value)
{
WriteRawVarint32(ref buffer, ref state, value);
}
/// <summary>
/// Writes an enum value, without a tag, to the stream.
/// </summary>
public static void WriteEnum(ref Span<byte> buffer, ref WriterInternalState state, int value)
{
WriteInt32(ref buffer, ref state, value);
}
/// <summary>
/// Writes an sfixed32 value, without a tag, to the stream.
/// </summary>
public static void WriteSFixed32(ref Span<byte> buffer, ref WriterInternalState state, int value)
{
WriteRawLittleEndian32(ref buffer, ref state, (uint)value);
}
/// <summary>
/// Writes an sfixed64 value, without a tag, to the stream.
/// </summary>
public static void WriteSFixed64(ref Span<byte> buffer, ref WriterInternalState state, long value)
{
WriteRawLittleEndian64(ref buffer, ref state, (ulong)value);
}
/// <summary>
/// Writes an sint32 value, without a tag, to the stream.
/// </summary>
public static void WriteSInt32(ref Span<byte> buffer, ref WriterInternalState state, int value)
{
WriteRawVarint32(ref buffer, ref state, EncodeZigZag32(value));
}
/// <summary>
/// Writes an sint64 value, without a tag, to the stream.
/// </summary>
public static void WriteSInt64(ref Span<byte> buffer, ref WriterInternalState state, long value)
{
WriteRawVarint64(ref buffer, ref state, EncodeZigZag64(value));
}
/// <summary>
/// Writes a length (in bytes) for length-delimited data.
/// </summary>
/// <remarks>
/// This method simply writes a rawint, but exists for clarity in calling code.
/// </remarks>
public static void WriteLength(ref Span<byte> buffer, ref WriterInternalState state, int length)
{
WriteRawVarint32(ref buffer, ref state, (uint)length);
}
#endregion
#region Writing primitives
/// <summary>
/// Writes a 32 bit value as a varint. The fast route is taken when
/// there's enough buffer space left to whizz through without checking
/// for each byte; otherwise, we resort to calling WriteRawByte each time.
/// </summary>
public static void WriteRawVarint32(ref Span<byte> buffer, ref WriterInternalState state, uint value)
{
// Optimize for the common case of a single byte value
if (value < 128 && state.position < buffer.Length)
{
buffer[state.position++] = (byte)value;
return;
}
// Fast path when capacity is available
while (state.position < buffer.Length)
{
if (value > 127)
{
buffer[state.position++] = (byte)((value & 0x7F) | 0x80);
value >>= 7;
}
else
{
buffer[state.position++] = (byte)value;
return;
}
}
while (value > 127)
{
WriteRawByte(ref buffer, ref state, (byte)((value & 0x7F) | 0x80));
value >>= 7;
}
WriteRawByte(ref buffer, ref state, (byte)value);
}
public static void WriteRawVarint64(ref Span<byte> buffer, ref WriterInternalState state, ulong value)
{
// Optimize for the common case of a single byte value
if (value < 128 && state.position < buffer.Length)
{
buffer[state.position++] = (byte)value;
return;
}
// Fast path when capacity is available
while (state.position < buffer.Length)
{
if (value > 127)
{
buffer[state.position++] = (byte)((value & 0x7F) | 0x80);
value >>= 7;
}
else
{
buffer[state.position++] = (byte)value;
return;
}
}
while (value > 127)
{
WriteRawByte(ref buffer, ref state, (byte)((value & 0x7F) | 0x80));
value >>= 7;
}
WriteRawByte(ref buffer, ref state, (byte)value);
}
public static void WriteRawLittleEndian32(ref Span<byte> buffer, ref WriterInternalState state, uint value)
{
const int length = sizeof(uint);
if (state.position + length > buffer.Length)
{
WriteRawLittleEndian32SlowPath(ref buffer, ref state, value);
}
else
{
BinaryPrimitives.WriteUInt32LittleEndian(buffer.Slice(state.position), value);
state.position += length;
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static void WriteRawLittleEndian32SlowPath(ref Span<byte> buffer, ref WriterInternalState state, uint value)
{
WriteRawByte(ref buffer, ref state, (byte)value);
WriteRawByte(ref buffer, ref state, (byte)(value >> 8));
WriteRawByte(ref buffer, ref state, (byte)(value >> 16));
WriteRawByte(ref buffer, ref state, (byte)(value >> 24));
}
public static void WriteRawLittleEndian64(ref Span<byte> buffer, ref WriterInternalState state, ulong value)
{
const int length = sizeof(ulong);
if (state.position + length > buffer.Length)
{
WriteRawLittleEndian64SlowPath(ref buffer, ref state, value);
}
else
{
BinaryPrimitives.WriteUInt64LittleEndian(buffer.Slice(state.position), value);
state.position += length;
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
public static void WriteRawLittleEndian64SlowPath(ref Span<byte> buffer, ref WriterInternalState state, ulong value)
{
WriteRawByte(ref buffer, ref state, (byte)value);
WriteRawByte(ref buffer, ref state, (byte)(value >> 8));
WriteRawByte(ref buffer, ref state, (byte)(value >> 16));
WriteRawByte(ref buffer, ref state, (byte)(value >> 24));
WriteRawByte(ref buffer, ref state, (byte)(value >> 32));
WriteRawByte(ref buffer, ref state, (byte)(value >> 40));
WriteRawByte(ref buffer, ref state, (byte)(value >> 48));
WriteRawByte(ref buffer, ref state, (byte)(value >> 56));
}
private static void WriteRawByte(ref Span<byte> buffer, ref WriterInternalState state, byte value)
{
if (state.position == buffer.Length)
{
WriteBufferHelper.RefreshBuffer(ref buffer, ref state);
}
buffer[state.position++] = value;
}
/// <summary>
/// Writes out an array of bytes.
/// </summary>
public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, byte[] value)
{
WriteRawBytes(ref buffer, ref state, new ReadOnlySpan<byte>(value));
}
/// <summary>
/// Writes out part of an array of bytes.
/// </summary>
public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, byte[] value, int offset, int length)
{
WriteRawBytes(ref buffer, ref state, new ReadOnlySpan<byte>(value, offset, length));
}
/// <summary>
/// Writes out part of an array of bytes.
/// </summary>
public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, ReadOnlySpan<byte> value)
{
if (buffer.Length - state.position >= value.Length)
{
// We have room in the current buffer.
value.CopyTo(buffer.Slice(state.position, value.Length));
state.position += value.Length;
}
else
{
// When writing to a CodedOutputStream backed by a Stream, we could avoid
// copying the data twice (first copying to the current buffer and
// and later writing from the current buffer to the underlying Stream)
// in some circumstances by writing the data directly to the underlying Stream.
// Current this is not being done to avoid specialcasing the code for
// CodedOutputStream vs IBufferWriter<byte>.
int bytesWritten = 0;
while (buffer.Length - state.position < value.Length - bytesWritten)
{
int length = buffer.Length - state.position;
value.Slice(bytesWritten, length).CopyTo(buffer.Slice(state.position, length));
bytesWritten += length;
state.position += length;
WriteBufferHelper.RefreshBuffer(ref buffer, ref state);
}
// copy the remaining data
int remainderLength = value.Length - bytesWritten;
value.Slice(bytesWritten, remainderLength).CopyTo(buffer.Slice(state.position, remainderLength));
state.position += remainderLength;
}
}
#endregion
#region Raw tag writing
/// <summary>
/// Encodes and writes a tag.
/// </summary>
public static void WriteTag(ref Span<byte> buffer, ref WriterInternalState state, int fieldNumber, WireFormat.WireType type)
{
WriteRawVarint32(ref buffer, ref state, WireFormat.MakeTag(fieldNumber, type));
}
/// <summary>
/// Writes an already-encoded tag.
/// </summary>
public static void WriteTag(ref Span<byte> buffer, ref WriterInternalState state, uint tag)
{
WriteRawVarint32(ref buffer, ref state, tag);
}
/// <summary>
/// Writes the given single-byte tag directly to the stream.
/// </summary>
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1)
{
WriteRawByte(ref buffer, ref state, b1);
}
/// <summary>
/// Writes the given two-byte tag directly to the stream.
/// </summary>
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2)
{
if (state.position + 2 > buffer.Length)
{
WriteRawTagSlowPath(ref buffer, ref state, b1, b2);
}
else
{
buffer[state.position++] = b1;
buffer[state.position++] = b2;
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2)
{
WriteRawByte(ref buffer, ref state, b1);
WriteRawByte(ref buffer, ref state, b2);
}
/// <summary>
/// Writes the given three-byte tag directly to the stream.
/// </summary>
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3)
{
if (state.position + 3 > buffer.Length)
{
WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3);
}
else
{
buffer[state.position++] = b1;
buffer[state.position++] = b2;
buffer[state.position++] = b3;
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3)
{
WriteRawByte(ref buffer, ref state, b1);
WriteRawByte(ref buffer, ref state, b2);
WriteRawByte(ref buffer, ref state, b3);
}
/// <summary>
/// Writes the given four-byte tag directly to the stream.
/// </summary>
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4)
{
if (state.position + 4 > buffer.Length)
{
WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3, b4);
}
else
{
buffer[state.position++] = b1;
buffer[state.position++] = b2;
buffer[state.position++] = b3;
buffer[state.position++] = b4;
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4)
{
WriteRawByte(ref buffer, ref state, b1);
WriteRawByte(ref buffer, ref state, b2);
WriteRawByte(ref buffer, ref state, b3);
WriteRawByte(ref buffer, ref state, b4);
}
/// <summary>
/// Writes the given five-byte tag directly to the stream.
/// </summary>
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4, byte b5)
{
if (state.position + 5 > buffer.Length)
{
WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3, b4, b5);
}
else
{
buffer[state.position++] = b1;
buffer[state.position++] = b2;
buffer[state.position++] = b3;
buffer[state.position++] = b4;
buffer[state.position++] = b5;
}
}
[MethodImpl(MethodImplOptions.NoInlining)]
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4, byte b5)
{
WriteRawByte(ref buffer, ref state, b1);
WriteRawByte(ref buffer, ref state, b2);
WriteRawByte(ref buffer, ref state, b3);
WriteRawByte(ref buffer, ref state, b4);
WriteRawByte(ref buffer, ref state, b5);
}
#endregion
/// <summary>
/// Encode a 32-bit value with ZigZag encoding.
/// </summary>
/// <remarks>
/// ZigZag encodes signed integers into values that can be efficiently
/// encoded with varint. (Otherwise, negative values must be
/// sign-extended to 64 bits to be varint encoded, thus always taking
/// 10 bytes on the wire.)
/// </remarks>
public static uint EncodeZigZag32(int n)
{
// Note: the right-shift must be arithmetic
return (uint)((n << 1) ^ (n >> 31));
}
/// <summary>
/// Encode a 64-bit value with ZigZag encoding.
/// </summary>
/// <remarks>
/// ZigZag encodes signed integers into values that can be efficiently
/// encoded with varint. (Otherwise, negative values must be
/// sign-extended to 64 bits to be varint encoded, thus always taking
/// 10 bytes on the wire.)
/// </remarks>
public static ulong EncodeZigZag64(long n)
{
return (ulong)((n << 1) ^ (n >> 63));
}
}
}