csharp-sdk-upm/Storage/Source/Internal/File/Cryptography/SHA1/SHA1CryptoServiceProvider.cs

496 lines
17 KiB
C#
Raw Normal View History

2019-07-19 15:01:34 +08:00
//
// System.Security.Cryptography.SHA1CryptoServiceProvider.cs
//
// Authors:
// Matthew S. Ford (Matthew.S.Ford@Rose-Hulman.Edu)
// Sebastien Pouliot (sebastien@ximian.com)
//
// Copyright 2001 by Matthew S. Ford.
// Copyright (C) 2004, 2005, 2008 Novell, Inc (http://www.novell.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// Note:
// The MS Framework includes two (almost) identical class for SHA1.
// SHA1Managed is a 100% managed implementation.
// SHA1CryptoServiceProvider (this file) is a wrapper on CryptoAPI.
// Mono must provide those two class for binary compatibility.
// In our case both class are wrappers around a managed internal class SHA1Internal.
using System.IO;
using System;
using System.Runtime.InteropServices;
namespace LeanCloud.Storage.Internal
{
internal class SHA1Internal
{
private const int BLOCK_SIZE_BYTES = 64;
private uint[] _H; // these are my chaining variables
private ulong count;
private byte[] _ProcessingBuffer; // Used to start data when passed less than a block worth.
private int _ProcessingBufferCount; // Counts how much data we have stored that still needs processed.
private uint[] buff;
public SHA1Internal()
{
_H = new uint[5];
_ProcessingBuffer = new byte[BLOCK_SIZE_BYTES];
buff = new uint[80];
Initialize();
}
public void HashCore(byte[] rgb, int ibStart, int cbSize)
{
int i;
if (_ProcessingBufferCount != 0)
{
if (cbSize < (BLOCK_SIZE_BYTES - _ProcessingBufferCount))
{
System.Buffer.BlockCopy(rgb, ibStart, _ProcessingBuffer, _ProcessingBufferCount, cbSize);
_ProcessingBufferCount += cbSize;
return;
}
else
{
i = (BLOCK_SIZE_BYTES - _ProcessingBufferCount);
System.Buffer.BlockCopy(rgb, ibStart, _ProcessingBuffer, _ProcessingBufferCount, i);
ProcessBlock(_ProcessingBuffer, 0);
_ProcessingBufferCount = 0;
ibStart += i;
cbSize -= i;
}
}
for (i = 0; i < cbSize - cbSize % BLOCK_SIZE_BYTES; i += BLOCK_SIZE_BYTES)
{
ProcessBlock(rgb, (uint)(ibStart + i));
}
if (cbSize % BLOCK_SIZE_BYTES != 0)
{
System.Buffer.BlockCopy(rgb, cbSize - cbSize % BLOCK_SIZE_BYTES + ibStart, _ProcessingBuffer, 0, cbSize % BLOCK_SIZE_BYTES);
_ProcessingBufferCount = cbSize % BLOCK_SIZE_BYTES;
}
}
public byte[] HashFinal()
{
byte[] hash = new byte[20];
ProcessFinalBlock(_ProcessingBuffer, 0, _ProcessingBufferCount);
for (int i = 0; i < 5; i++)
{
for (int j = 0; j < 4; j++)
{
hash[i * 4 + j] = (byte)(_H[i] >> (8 * (3 - j)));
}
}
return hash;
}
public void Initialize()
{
count = 0;
_ProcessingBufferCount = 0;
_H[0] = 0x67452301;
_H[1] = 0xefcdab89;
_H[2] = 0x98badcfe;
_H[3] = 0x10325476;
_H[4] = 0xC3D2E1F0;
}
private void ProcessBlock(byte[] inputBuffer, uint inputOffset)
{
uint a, b, c, d, e;
count += BLOCK_SIZE_BYTES;
// abc removal would not work on the fields
uint[] _H = this._H;
uint[] buff = this.buff;
InitialiseBuff(buff, inputBuffer, inputOffset);
FillBuff(buff);
a = _H[0];
b = _H[1];
c = _H[2];
d = _H[3];
e = _H[4];
// This function was unrolled because it seems to be doubling our performance with current compiler/VM.
// Possibly roll up if this changes.
// ---- Round 1 --------
int i = 0;
while (i < 20)
{
e += ((a << 5) | (a >> 27)) + (((c ^ d) & b) ^ d) + 0x5A827999 + buff[i];
b = (b << 30) | (b >> 2);
d += ((e << 5) | (e >> 27)) + (((b ^ c) & a) ^ c) + 0x5A827999 + buff[i + 1];
a = (a << 30) | (a >> 2);
c += ((d << 5) | (d >> 27)) + (((a ^ b) & e) ^ b) + 0x5A827999 + buff[i + 2];
e = (e << 30) | (e >> 2);
b += ((c << 5) | (c >> 27)) + (((e ^ a) & d) ^ a) + 0x5A827999 + buff[i + 3];
d = (d << 30) | (d >> 2);
a += ((b << 5) | (b >> 27)) + (((d ^ e) & c) ^ e) + 0x5A827999 + buff[i + 4];
c = (c << 30) | (c >> 2);
i += 5;
}
// ---- Round 2 --------
while (i < 40)
{
e += ((a << 5) | (a >> 27)) + (b ^ c ^ d) + 0x6ED9EBA1 + buff[i];
b = (b << 30) | (b >> 2);
d += ((e << 5) | (e >> 27)) + (a ^ b ^ c) + 0x6ED9EBA1 + buff[i + 1];
a = (a << 30) | (a >> 2);
c += ((d << 5) | (d >> 27)) + (e ^ a ^ b) + 0x6ED9EBA1 + buff[i + 2];
e = (e << 30) | (e >> 2);
b += ((c << 5) | (c >> 27)) + (d ^ e ^ a) + 0x6ED9EBA1 + buff[i + 3];
d = (d << 30) | (d >> 2);
a += ((b << 5) | (b >> 27)) + (c ^ d ^ e) + 0x6ED9EBA1 + buff[i + 4];
c = (c << 30) | (c >> 2);
i += 5;
}
// ---- Round 3 --------
while (i < 60)
{
e += ((a << 5) | (a >> 27)) + ((b & c) | (b & d) | (c & d)) + 0x8F1BBCDC + buff[i];
b = (b << 30) | (b >> 2);
d += ((e << 5) | (e >> 27)) + ((a & b) | (a & c) | (b & c)) + 0x8F1BBCDC + buff[i + 1];
a = (a << 30) | (a >> 2);
c += ((d << 5) | (d >> 27)) + ((e & a) | (e & b) | (a & b)) + 0x8F1BBCDC + buff[i + 2];
e = (e << 30) | (e >> 2);
b += ((c << 5) | (c >> 27)) + ((d & e) | (d & a) | (e & a)) + 0x8F1BBCDC + buff[i + 3];
d = (d << 30) | (d >> 2);
a += ((b << 5) | (b >> 27)) + ((c & d) | (c & e) | (d & e)) + 0x8F1BBCDC + buff[i + 4];
c = (c << 30) | (c >> 2);
i += 5;
}
// ---- Round 4 --------
while (i < 80)
{
e += ((a << 5) | (a >> 27)) + (b ^ c ^ d) + 0xCA62C1D6 + buff[i];
b = (b << 30) | (b >> 2);
d += ((e << 5) | (e >> 27)) + (a ^ b ^ c) + 0xCA62C1D6 + buff[i + 1];
a = (a << 30) | (a >> 2);
c += ((d << 5) | (d >> 27)) + (e ^ a ^ b) + 0xCA62C1D6 + buff[i + 2];
e = (e << 30) | (e >> 2);
b += ((c << 5) | (c >> 27)) + (d ^ e ^ a) + 0xCA62C1D6 + buff[i + 3];
d = (d << 30) | (d >> 2);
a += ((b << 5) | (b >> 27)) + (c ^ d ^ e) + 0xCA62C1D6 + buff[i + 4];
c = (c << 30) | (c >> 2);
i += 5;
}
_H[0] += a;
_H[1] += b;
_H[2] += c;
_H[3] += d;
_H[4] += e;
}
private static void InitialiseBuff(uint[] buff, byte[] input, uint inputOffset)
{
buff[0] = (uint)((input[inputOffset + 0] << 24) | (input[inputOffset + 1] << 16) | (input[inputOffset + 2] << 8) | (input[inputOffset + 3]));
buff[1] = (uint)((input[inputOffset + 4] << 24) | (input[inputOffset + 5] << 16) | (input[inputOffset + 6] << 8) | (input[inputOffset + 7]));
buff[2] = (uint)((input[inputOffset + 8] << 24) | (input[inputOffset + 9] << 16) | (input[inputOffset + 10] << 8) | (input[inputOffset + 11]));
buff[3] = (uint)((input[inputOffset + 12] << 24) | (input[inputOffset + 13] << 16) | (input[inputOffset + 14] << 8) | (input[inputOffset + 15]));
buff[4] = (uint)((input[inputOffset + 16] << 24) | (input[inputOffset + 17] << 16) | (input[inputOffset + 18] << 8) | (input[inputOffset + 19]));
buff[5] = (uint)((input[inputOffset + 20] << 24) | (input[inputOffset + 21] << 16) | (input[inputOffset + 22] << 8) | (input[inputOffset + 23]));
buff[6] = (uint)((input[inputOffset + 24] << 24) | (input[inputOffset + 25] << 16) | (input[inputOffset + 26] << 8) | (input[inputOffset + 27]));
buff[7] = (uint)((input[inputOffset + 28] << 24) | (input[inputOffset + 29] << 16) | (input[inputOffset + 30] << 8) | (input[inputOffset + 31]));
buff[8] = (uint)((input[inputOffset + 32] << 24) | (input[inputOffset + 33] << 16) | (input[inputOffset + 34] << 8) | (input[inputOffset + 35]));
buff[9] = (uint)((input[inputOffset + 36] << 24) | (input[inputOffset + 37] << 16) | (input[inputOffset + 38] << 8) | (input[inputOffset + 39]));
buff[10] = (uint)((input[inputOffset + 40] << 24) | (input[inputOffset + 41] << 16) | (input[inputOffset + 42] << 8) | (input[inputOffset + 43]));
buff[11] = (uint)((input[inputOffset + 44] << 24) | (input[inputOffset + 45] << 16) | (input[inputOffset + 46] << 8) | (input[inputOffset + 47]));
buff[12] = (uint)((input[inputOffset + 48] << 24) | (input[inputOffset + 49] << 16) | (input[inputOffset + 50] << 8) | (input[inputOffset + 51]));
buff[13] = (uint)((input[inputOffset + 52] << 24) | (input[inputOffset + 53] << 16) | (input[inputOffset + 54] << 8) | (input[inputOffset + 55]));
buff[14] = (uint)((input[inputOffset + 56] << 24) | (input[inputOffset + 57] << 16) | (input[inputOffset + 58] << 8) | (input[inputOffset + 59]));
buff[15] = (uint)((input[inputOffset + 60] << 24) | (input[inputOffset + 61] << 16) | (input[inputOffset + 62] << 8) | (input[inputOffset + 63]));
}
private static void FillBuff(uint[] buff)
{
uint val;
for (int i = 16; i < 80; i += 8)
{
val = buff[i - 3] ^ buff[i - 8] ^ buff[i - 14] ^ buff[i - 16];
buff[i] = (val << 1) | (val >> 31);
val = buff[i - 2] ^ buff[i - 7] ^ buff[i - 13] ^ buff[i - 15];
buff[i + 1] = (val << 1) | (val >> 31);
val = buff[i - 1] ^ buff[i - 6] ^ buff[i - 12] ^ buff[i - 14];
buff[i + 2] = (val << 1) | (val >> 31);
val = buff[i + 0] ^ buff[i - 5] ^ buff[i - 11] ^ buff[i - 13];
buff[i + 3] = (val << 1) | (val >> 31);
val = buff[i + 1] ^ buff[i - 4] ^ buff[i - 10] ^ buff[i - 12];
buff[i + 4] = (val << 1) | (val >> 31);
val = buff[i + 2] ^ buff[i - 3] ^ buff[i - 9] ^ buff[i - 11];
buff[i + 5] = (val << 1) | (val >> 31);
val = buff[i + 3] ^ buff[i - 2] ^ buff[i - 8] ^ buff[i - 10];
buff[i + 6] = (val << 1) | (val >> 31);
val = buff[i + 4] ^ buff[i - 1] ^ buff[i - 7] ^ buff[i - 9];
buff[i + 7] = (val << 1) | (val >> 31);
}
}
private void ProcessFinalBlock(byte[] inputBuffer, int inputOffset, int inputCount)
{
ulong total = count + (ulong)inputCount;
int paddingSize = (56 - (int)(total % BLOCK_SIZE_BYTES));
if (paddingSize < 1)
paddingSize += BLOCK_SIZE_BYTES;
int length = inputCount + paddingSize + 8;
byte[] fooBuffer = (length == 64) ? _ProcessingBuffer : new byte[length];
for (int i = 0; i < inputCount; i++)
{
fooBuffer[i] = inputBuffer[i + inputOffset];
}
fooBuffer[inputCount] = 0x80;
for (int i = inputCount + 1; i < inputCount + paddingSize; i++)
{
fooBuffer[i] = 0x00;
}
// I deal in bytes. The algorithm deals in bits.
ulong size = total << 3;
AddLength(size, fooBuffer, inputCount + paddingSize);
ProcessBlock(fooBuffer, 0);
if (length == 128)
ProcessBlock(fooBuffer, 64);
}
internal void AddLength(ulong length, byte[] buffer, int position)
{
buffer[position++] = (byte)(length >> 56);
buffer[position++] = (byte)(length >> 48);
buffer[position++] = (byte)(length >> 40);
buffer[position++] = (byte)(length >> 32);
buffer[position++] = (byte)(length >> 24);
buffer[position++] = (byte)(length >> 16);
buffer[position++] = (byte)(length >> 8);
buffer[position] = (byte)(length);
}
}
public sealed class SHA1CryptoServiceProvider : SHA1
{
private SHA1Internal sha;
public SHA1CryptoServiceProvider()
{
sha = new SHA1Internal();
}
~SHA1CryptoServiceProvider()
{
Dispose(false);
}
protected override void Dispose(bool disposing)
{
// nothing new to do (managed implementation)
base.Dispose(disposing);
}
protected override void HashCore(byte[] rgb, int ibStart, int cbSize)
{
State = 1;
sha.HashCore(rgb, ibStart, cbSize);
}
protected override byte[] HashFinal()
{
State = 0;
return sha.HashFinal();
}
public override void Initialize()
{
sha.Initialize();
}
}
public abstract class SHA1 : HashAlgorithm
{
protected SHA1()
{
HashSizeValue = 160;
}
}
public abstract class HashAlgorithm : IDisposable
{
protected int HashSizeValue;
protected internal byte[] HashValue;
protected int State = 0;
private bool m_bDisposed = false;
protected HashAlgorithm() { }
//
// public properties
//
public virtual int HashSize
{
get { return HashSizeValue; }
}
//
// public methods
//
public byte[] ComputeHash(Stream inputStream)
{
if (m_bDisposed)
throw new ObjectDisposedException(null);
// Default the buffer size to 4K.
byte[] buffer = new byte[4096];
int bytesRead;
do
{
bytesRead = inputStream.Read(buffer, 0, 4096);
if (bytesRead > 0)
{
HashCore(buffer, 0, bytesRead);
}
} while (bytesRead > 0);
HashValue = HashFinal();
byte[] Tmp = (byte[])HashValue.Clone();
Initialize();
return (Tmp);
}
public byte[] ComputeHash(byte[] buffer)
{
if (m_bDisposed)
throw new ObjectDisposedException(null);
// Do some validation
if (buffer == null) throw new ArgumentNullException("buffer");
HashCore(buffer, 0, buffer.Length);
HashValue = HashFinal();
byte[] Tmp = (byte[])HashValue.Clone();
Initialize();
return (Tmp);
}
// ICryptoTransform methods
// we assume any HashAlgorithm can take input a byte at a time
public virtual int InputBlockSize
{
get { return (1); }
}
public virtual int OutputBlockSize
{
get { return (1); }
}
public virtual bool CanTransformMultipleBlocks
{
get { return (true); }
}
public virtual bool CanReuseTransform
{
get { return (true); }
}
public void Dispose()
{
Dispose(true);
GC.SuppressFinalize(this);
}
public void Clear()
{
(this as IDisposable).Dispose();
}
protected virtual void Dispose(bool disposing)
{
if (disposing)
{
if (HashValue != null)
Array.Clear(HashValue, 0, HashValue.Length);
HashValue = null;
m_bDisposed = true;
}
}
//
// abstract public methods
//
public abstract void Initialize();
protected abstract void HashCore(byte[] array, int ibStart, int cbSize);
protected abstract byte[] HashFinal();
}
}