#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2015 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Security;
using System.Threading;
namespace LC.Google.Protobuf.Collections
{
///
/// The contents of a repeated field: essentially, a collection with some extra
/// restrictions (no null values) and capabilities (deep cloning).
///
///
/// This implementation does not generally prohibit the use of types which are not
/// supported by Protocol Buffers but nor does it guarantee that all operations will work in such cases.
///
/// The element type of the repeated field.
public sealed class RepeatedField : IList, IList, IDeepCloneable>, IEquatable>
#if !NET35
, IReadOnlyList
#endif
{
private static readonly EqualityComparer EqualityComparer = ProtobufEqualityComparers.GetEqualityComparer();
private static readonly T[] EmptyArray = new T[0];
private const int MinArraySize = 8;
private T[] array = EmptyArray;
private int count = 0;
///
/// Creates a deep clone of this repeated field.
///
///
/// If the field type is
/// a message type, each element is also cloned; otherwise, it is
/// assumed that the field type is primitive (including string and
/// bytes, both of which are immutable) and so a simple copy is
/// equivalent to a deep clone.
///
/// A deep clone of this repeated field.
public RepeatedField Clone()
{
RepeatedField clone = new RepeatedField();
if (array != EmptyArray)
{
clone.array = (T[])array.Clone();
IDeepCloneable[] cloneableArray = clone.array as IDeepCloneable[];
if (cloneableArray != null)
{
for (int i = 0; i < count; i++)
{
clone.array[i] = cloneableArray[i].Clone();
}
}
}
clone.count = count;
return clone;
}
///
/// Adds the entries from the given input stream, decoding them with the specified codec.
///
/// The input stream to read from.
/// The codec to use in order to read each entry.
public void AddEntriesFrom(CodedInputStream input, FieldCodec codec)
{
ParseContext.Initialize(input, out ParseContext ctx);
try
{
AddEntriesFrom(ref ctx, codec);
}
finally
{
ctx.CopyStateTo(input);
}
}
///
/// Adds the entries from the given parse context, decoding them with the specified codec.
///
/// The input to read from.
/// The codec to use in order to read each entry.
[SecuritySafeCritical]
public void AddEntriesFrom(ref ParseContext ctx, FieldCodec codec)
{
// TODO: Inline some of the Add code, so we can avoid checking the size on every
// iteration.
uint tag = ctx.state.lastTag;
var reader = codec.ValueReader;
// Non-nullable value types can be packed or not.
if (FieldCodec.IsPackedRepeatedField(tag))
{
int length = ctx.ReadLength();
if (length > 0)
{
int oldLimit = SegmentedBufferHelper.PushLimit(ref ctx.state, length);
// If the content is fixed size then we can calculate the length
// of the repeated field and pre-initialize the underlying collection.
//
// Check that the supplied length doesn't exceed the underlying buffer.
// That prevents a malicious length from initializing a very large collection.
if (codec.FixedSize > 0 && length % codec.FixedSize == 0 && ParsingPrimitives.IsDataAvailable(ref ctx.state, length))
{
EnsureSize(count + (length / codec.FixedSize));
while (!SegmentedBufferHelper.IsReachedLimit(ref ctx.state))
{
// Only FieldCodecs with a fixed size can reach here, and they are all known
// types that don't allow the user to specify a custom reader action.
// reader action will never return null.
array[count++] = reader(ref ctx);
}
}
else
{
// Content is variable size so add until we reach the limit.
while (!SegmentedBufferHelper.IsReachedLimit(ref ctx.state))
{
Add(reader(ref ctx));
}
}
SegmentedBufferHelper.PopLimit(ref ctx.state, oldLimit);
}
// Empty packed field. Odd, but valid - just ignore.
}
else
{
// Not packed... (possibly not packable)
do
{
Add(reader(ref ctx));
} while (ParsingPrimitives.MaybeConsumeTag(ref ctx.buffer, ref ctx.state, tag));
}
}
///
/// Calculates the size of this collection based on the given codec.
///
/// The codec to use when encoding each field.
/// The number of bytes that would be written to an output by one of the WriteTo methods,
/// using the same codec.
public int CalculateSize(FieldCodec codec)
{
if (count == 0)
{
return 0;
}
uint tag = codec.Tag;
if (codec.PackedRepeatedField)
{
int dataSize = CalculatePackedDataSize(codec);
return CodedOutputStream.ComputeRawVarint32Size(tag) +
CodedOutputStream.ComputeLengthSize(dataSize) +
dataSize;
}
else
{
var sizeCalculator = codec.ValueSizeCalculator;
int size = count * CodedOutputStream.ComputeRawVarint32Size(tag);
if (codec.EndTag != 0)
{
size += count * CodedOutputStream.ComputeRawVarint32Size(codec.EndTag);
}
for (int i = 0; i < count; i++)
{
size += sizeCalculator(array[i]);
}
return size;
}
}
private int CalculatePackedDataSize(FieldCodec codec)
{
int fixedSize = codec.FixedSize;
if (fixedSize == 0)
{
var calculator = codec.ValueSizeCalculator;
int tmp = 0;
for (int i = 0; i < count; i++)
{
tmp += calculator(array[i]);
}
return tmp;
}
else
{
return fixedSize * Count;
}
}
///
/// Writes the contents of this collection to the given ,
/// encoding each value using the specified codec.
///
/// The output stream to write to.
/// The codec to use when encoding each value.
public void WriteTo(CodedOutputStream output, FieldCodec codec)
{
WriteContext.Initialize(output, out WriteContext ctx);
try
{
WriteTo(ref ctx, codec);
}
finally
{
ctx.CopyStateTo(output);
}
}
///
/// Writes the contents of this collection to the given write context,
/// encoding each value using the specified codec.
///
/// The write context to write to.
/// The codec to use when encoding each value.
[SecuritySafeCritical]
public void WriteTo(ref WriteContext ctx, FieldCodec codec)
{
if (count == 0)
{
return;
}
var writer = codec.ValueWriter;
var tag = codec.Tag;
if (codec.PackedRepeatedField)
{
// Packed primitive type
int size = CalculatePackedDataSize(codec);
ctx.WriteTag(tag);
ctx.WriteLength(size);
for (int i = 0; i < count; i++)
{
writer(ref ctx, array[i]);
}
}
else
{
// Not packed: a simple tag/value pair for each value.
// Can't use codec.WriteTagAndValue, as that omits default values.
for (int i = 0; i < count; i++)
{
ctx.WriteTag(tag);
writer(ref ctx, array[i]);
if (codec.EndTag != 0)
{
ctx.WriteTag(codec.EndTag);
}
}
}
}
///
/// Gets and sets the capacity of the RepeatedField's internal array. WHen set, the internal array is reallocated to the given capacity.
/// The new value is less than Count -or- when Count is less than 0.
///
public int Capacity
{
get { return array.Length; }
set
{
if (value < count)
{
throw new ArgumentOutOfRangeException("Capacity", value,
$"Cannot set Capacity to a value smaller than the current item count, {count}");
}
if (value >= 0 && value != array.Length)
{
SetSize(value);
}
}
}
// May increase the size of the internal array, but will never shrink it.
private void EnsureSize(int size)
{
if (array.Length < size)
{
size = Math.Max(size, MinArraySize);
int newSize = Math.Max(array.Length * 2, size);
SetSize(newSize);
}
}
// Sets the internal array to an exact size.
private void SetSize(int size)
{
if (size != array.Length)
{
var tmp = new T[size];
Array.Copy(array, 0, tmp, 0, count);
array = tmp;
}
}
///
/// Adds the specified item to the collection.
///
/// The item to add.
public void Add(T item)
{
ProtoPreconditions.CheckNotNullUnconstrained(item, nameof(item));
EnsureSize(count + 1);
array[count++] = item;
}
///
/// Removes all items from the collection.
///
public void Clear()
{
array = EmptyArray;
count = 0;
}
///
/// Determines whether this collection contains the given item.
///
/// The item to find.
/// true if this collection contains the given item; false otherwise.
public bool Contains(T item)
{
return IndexOf(item) != -1;
}
///
/// Copies this collection to the given array.
///
/// The array to copy to.
/// The first index of the array to copy to.
public void CopyTo(T[] array, int arrayIndex)
{
Array.Copy(this.array, 0, array, arrayIndex, count);
}
///
/// Removes the specified item from the collection
///
/// The item to remove.
/// true if the item was found and removed; false otherwise.
public bool Remove(T item)
{
int index = IndexOf(item);
if (index == -1)
{
return false;
}
Array.Copy(array, index + 1, array, index, count - index - 1);
count--;
array[count] = default(T);
return true;
}
///
/// Gets the number of elements contained in the collection.
///
public int Count => count;
///
/// Gets a value indicating whether the collection is read-only.
///
public bool IsReadOnly => false;
///
/// Adds all of the specified values into this collection.
///
/// The values to add to this collection.
public void AddRange(IEnumerable values)
{
ProtoPreconditions.CheckNotNull(values, nameof(values));
// Optimization 1: If the collection we're adding is already a RepeatedField,
// we know the values are valid.
var otherRepeatedField = values as RepeatedField;
if (otherRepeatedField != null)
{
EnsureSize(count + otherRepeatedField.count);
Array.Copy(otherRepeatedField.array, 0, array, count, otherRepeatedField.count);
count += otherRepeatedField.count;
return;
}
// Optimization 2: The collection is an ICollection, so we can expand
// just once and ask the collection to copy itself into the array.
var collection = values as ICollection;
if (collection != null)
{
var extraCount = collection.Count;
// For reference types and nullable value types, we need to check that there are no nulls
// present. (This isn't a thread-safe approach, but we don't advertise this is thread-safe.)
// We expect the JITter to optimize this test to true/false, so it's effectively conditional
// specialization.
if (default(T) == null)
{
// TODO: Measure whether iterating once to check and then letting the collection copy
// itself is faster or slower than iterating and adding as we go. For large
// collections this will not be great in terms of cache usage... but the optimized
// copy may be significantly faster than doing it one at a time.
foreach (var item in collection)
{
if (item == null)
{
throw new ArgumentException("Sequence contained null element", nameof(values));
}
}
}
EnsureSize(count + extraCount);
collection.CopyTo(array, count);
count += extraCount;
return;
}
// We *could* check for ICollection as well, but very very few collections implement
// ICollection but not ICollection. (HashSet does, for one...)
// Fall back to a slower path of adding items one at a time.
foreach (T item in values)
{
Add(item);
}
}
///
/// Adds all of the specified values into this collection. This method is present to
/// allow repeated fields to be constructed from queries within collection initializers.
/// Within non-collection-initializer code, consider using the equivalent
/// method instead for clarity.
///
/// The values to add to this collection.
public void Add(IEnumerable values)
{
AddRange(values);
}
///
/// Returns an enumerator that iterates through the collection.
///
///
/// An enumerator that can be used to iterate through the collection.
///
public IEnumerator GetEnumerator()
{
for (int i = 0; i < count; i++)
{
yield return array[i];
}
}
///
/// Determines whether the specified , is equal to this instance.
///
/// The to compare with this instance.
///
/// true if the specified is equal to this instance; otherwise, false.
///
public override bool Equals(object obj)
{
return Equals(obj as RepeatedField);
}
///
/// Returns an enumerator that iterates through a collection.
///
///
/// An object that can be used to iterate through the collection.
///
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
///
/// Returns a hash code for this instance.
///
///
/// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table.
///
public override int GetHashCode()
{
int hash = 0;
for (int i = 0; i < count; i++)
{
hash = hash * 31 + array[i].GetHashCode();
}
return hash;
}
///
/// Compares this repeated field with another for equality.
///
/// The repeated field to compare this with.
/// true if refers to an equal repeated field; false otherwise.
public bool Equals(RepeatedField other)
{
if (ReferenceEquals(other, null))
{
return false;
}
if (ReferenceEquals(other, this))
{
return true;
}
if (other.Count != this.Count)
{
return false;
}
EqualityComparer comparer = EqualityComparer;
for (int i = 0; i < count; i++)
{
if (!comparer.Equals(array[i], other.array[i]))
{
return false;
}
}
return true;
}
///
/// Returns the index of the given item within the collection, or -1 if the item is not
/// present.
///
/// The item to find in the collection.
/// The zero-based index of the item, or -1 if it is not found.
public int IndexOf(T item)
{
ProtoPreconditions.CheckNotNullUnconstrained(item, nameof(item));
EqualityComparer comparer = EqualityComparer;
for (int i = 0; i < count; i++)
{
if (comparer.Equals(array[i], item))
{
return i;
}
}
return -1;
}
///
/// Inserts the given item at the specified index.
///
/// The index at which to insert the item.
/// The item to insert.
public void Insert(int index, T item)
{
ProtoPreconditions.CheckNotNullUnconstrained(item, nameof(item));
if (index < 0 || index > count)
{
throw new ArgumentOutOfRangeException(nameof(index));
}
EnsureSize(count + 1);
Array.Copy(array, index, array, index + 1, count - index);
array[index] = item;
count++;
}
///
/// Removes the item at the given index.
///
/// The zero-based index of the item to remove.
public void RemoveAt(int index)
{
if (index < 0 || index >= count)
{
throw new ArgumentOutOfRangeException(nameof(index));
}
Array.Copy(array, index + 1, array, index, count - index - 1);
count--;
array[count] = default(T);
}
///
/// Returns a string representation of this repeated field, in the same
/// way as it would be represented by the default JSON formatter.
///
public override string ToString()
{
var writer = new StringWriter();
JsonFormatter.Default.WriteList(writer, this);
return writer.ToString();
}
///
/// Gets or sets the item at the specified index.
///
///
/// The element at the specified index.
///
/// The zero-based index of the element to get or set.
/// The item at the specified index.
public T this[int index]
{
get
{
if (index < 0 || index >= count)
{
throw new ArgumentOutOfRangeException(nameof(index));
}
return array[index];
}
set
{
if (index < 0 || index >= count)
{
throw new ArgumentOutOfRangeException(nameof(index));
}
ProtoPreconditions.CheckNotNullUnconstrained(value, nameof(value));
array[index] = value;
}
}
#region Explicit interface implementation for IList and ICollection.
bool IList.IsFixedSize => false;
void ICollection.CopyTo(Array array, int index)
{
Array.Copy(this.array, 0, array, index, count);
}
bool ICollection.IsSynchronized => false;
object ICollection.SyncRoot => this;
object IList.this[int index]
{
get { return this[index]; }
set { this[index] = (T)value; }
}
int IList.Add(object value)
{
Add((T) value);
return count - 1;
}
bool IList.Contains(object value)
{
return (value is T && Contains((T)value));
}
int IList.IndexOf(object value)
{
if (!(value is T))
{
return -1;
}
return IndexOf((T)value);
}
void IList.Insert(int index, object value)
{
Insert(index, (T) value);
}
void IList.Remove(object value)
{
if (!(value is T))
{
return;
}
Remove((T)value);
}
#endregion
}
}