2025-07-23 19:34:42 +08:00
|
|
|
|
using System;
|
2025-06-20 16:56:14 +08:00
|
|
|
|
|
|
|
|
|
namespace Obfuz.Utils
|
|
|
|
|
{
|
2025-06-22 19:33:28 +08:00
|
|
|
|
|
2025-06-20 16:56:14 +08:00
|
|
|
|
internal static class MathUtil
|
|
|
|
|
{
|
|
|
|
|
//public static int ModInverseOdd32(int sa)
|
|
|
|
|
//{
|
|
|
|
|
// uint a = (uint)sa;
|
|
|
|
|
// if (a % 2 == 0)
|
|
|
|
|
// throw new ArgumentException("Input must be an odd number.", nameof(a));
|
|
|
|
|
|
|
|
|
|
// uint x = 1; // 初始解:x₀ = 1 (mod 2)
|
|
|
|
|
// for (int i = 0; i < 5; i++) // 迭代5次(2^1 → 2^32)
|
|
|
|
|
// {
|
|
|
|
|
// int shift = 2 << i; // 当前模数为 2^(2^(i+1))
|
|
|
|
|
// ulong mod = 1UL << shift; // 使用 ulong 避免溢出
|
|
|
|
|
// ulong ax = (ulong)a * x; // 计算 a*x(64位避免截断)
|
|
|
|
|
// ulong term = (2 - ax) % mod;
|
|
|
|
|
// x = (uint)((x * term) % mod); // 更新 x,结果截断为 uint
|
|
|
|
|
// }
|
|
|
|
|
// return (int)x; // 最终解为 x₅ mod 2^32
|
|
|
|
|
//}
|
|
|
|
|
|
|
|
|
|
public static int ModInverse32(int sa)
|
|
|
|
|
{
|
|
|
|
|
uint x = (uint)sa;
|
|
|
|
|
if ((x & 1) == 0)
|
|
|
|
|
throw new ArgumentException("x must be odd (coprime with 2^32)");
|
|
|
|
|
|
|
|
|
|
uint inv = x;
|
|
|
|
|
inv = inv * (2 - x * inv); // 1
|
|
|
|
|
inv = inv * (2 - x * inv); // 2
|
|
|
|
|
inv = inv * (2 - x * inv); // 3
|
|
|
|
|
inv = inv * (2 - x * inv); // 4
|
|
|
|
|
inv = inv * (2 - x * inv); // 5
|
|
|
|
|
return (int)inv;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
public static long ModInverse64(long sx)
|
|
|
|
|
{
|
|
|
|
|
ulong x = (ulong)sx;
|
|
|
|
|
if ((x & 1) == 0)
|
|
|
|
|
throw new ArgumentException("x must be odd (coprime with 2^64)");
|
|
|
|
|
|
|
|
|
|
ulong inv = x;
|
|
|
|
|
inv *= 2 - x * inv; // 1
|
|
|
|
|
inv *= 2 - x * inv; // 2
|
|
|
|
|
inv *= 2 - x * inv; // 3
|
|
|
|
|
inv *= 2 - x * inv; // 4
|
|
|
|
|
inv *= 2 - x * inv; // 5
|
|
|
|
|
inv *= 2 - x * inv; // 6
|
|
|
|
|
|
|
|
|
|
return (long)inv;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|